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Abstract

Carbon Taxes and Cap-and-Trade are the two leading approaches for pollution regulation. Proponents

of Taxes have argued that Cap-and-Trade could facilitate collusion among firms via the trading mech-

anism, leading to suboptimal welfare outcomes. We examine this claim using a rigorous yet rich model

of production and pollution under competition that allows for the possibility of collusion among firms

via trading.
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1 Introduction

Pollution is an inevitable by-product of production, and an ancient problem. [Hong et al., 1996] analyze

air molecules trapped in Greenland ice to track air-pollution from copper smelting over the last 5,000

years.

Figure 1: History of air pollution from copper smelting.

They find evidence of soaring pollution levels 2,000 and 900 years ago, coinciding precisely with the

peaks of the Roman empire and the Chinese Song dynasty– two periods of bustling economic activity

(See Figure 1).

More recently, concerns over climate change have thrown greenhouse gases (GHG) under the spot-

light. Carbon dioxide (CO2) emissions represent the bulk of man-made GHG emissions (83.7% in the

U.S., 82.4% in Europe and 94.8% in Japan). In the U.S., business operations contribute 62% of GHG

emissions, while personal vehicle use and residential buildings account for the rest ([Hockstad and Cook, 2012]).

Carbon dioxide emissions “track economic growth, slowing with recessions, but essentially rising and

rising.” (Matthew Arnold–World Resources Institute– in [Iannuzzi, 2002], Foreword.) A reading of the

carbon barometer for May 2013 puts carbon dioxide concentrations in the Earth’s atmosphere at 399.89

ppm and rising, a 41 percent increase since the early 1800s ([Scripps, 2013]). Before carbon emissions

became an issue, concerns crystallized around acid rains arising from sulfur dioxide discharges by fossil

fuel power plants, smog caused by particulate matter and ozone emissions around our cities, and many

other environmental problems originating from expanding economic activities.

A firm’s pollution imposes a negative externality on society, in that the pollution affects people,

wildlife and the natural environment outside the firm’s boundaries. An unregulated firm does not bear

the full costs of its pollution, since its incentives to control or abate its pollution are not commensu-

rate with the pollution damage it causes. Thus, regulation is inevitable to mitigate pollution in the

context of negative externalities (cf. [Baumol and Oates, 1988], [Cropper and Oates, 1992]). Perhaps

the earliest recorded instance of pollution regulation was in London in 1272, when King Edward I

banned the burning of sea-coal–a cheap, abundant but very smoky fuel.1 Beginning in the 1970s, regu-
1http://www.epa.gov/aboutepa/history/topics/perspect/london.html
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lators around the world have experimented with various mechanisms for pollution control. Centralized

control mechanisms used today include technology mandates and performance standards such as the

maximum permissible emissions rate for a particular technology. Often, such centralized mandates are

suboptimal because (i) the regulator is unlikely to be fully informed about each firm’s operating condi-

tions (e.g., its abatement costs), (ii) efficiencies that could be achieved by tapping into firms’ expertise

are forgone ([Tietenberg, 1985]), (iii) the regulator incurs high monitoring and information acquisition

costs, particularly when the incentives of firms and the regulator diverge (cf. [Iannuzzi, 2002]), and

(iv) such mandates frequently invite litigation, with its related financial burdens and compliance delays

([Tietenberg, 1985]). To overcome these difficulties, economists have long urged the use of economic in-

centives, such as pollution taxes and tradable emission allowances (i.e., cap-and-trade) that force firms

to internalize the costs of their pollution (Stavins 1998, 2003). In this paper, we analyze and compare

two widely used incentive-based mechanisms for pollution control: Tax and Cap-and-Trade.

Under the Tax mechanism, the regulator charges each firm with a tax commensurate with its pol-

lution. [Stavins, 2003] identifies ten applications of emission taxes in Europe, including for carbon

monoxide, carbon dioxide, sulfur dioxide, and nitrogen oxides. France and Sweden tax emissions of

sulfur and nitrogen oxide. Finland was the first country in the world to introduce a carbon tax in 1990,

with Denmark, Italy, Netherlands, Norway and Sweden following suit. In the United States, the carbon

tax is being debated as an alternative to cap-and-trade.

Under Cap-and-Trade, the regulator directly imposes a pollution limit (the ‘Cap’) on firms with

heavy fines as a deterrent for flouting, and firms can comply through some combination of three ac-

tions: (a) pollution abatement, (b) output reduction and (c) trading in emission allowances, which

effectively shifts firms’ pollution constraints up or down. The premise is that cap-and-trade would facil-

itate efficient allocation of emission allowances via the market mechanism ([Coase, 1960], [Dales, 1968],

[Montgomery, 1972], [Schmalensee et al., 1998]). Since 1995, the U.S. Acid Rain Program has included

a cap-and-trade system for the reduction of sulfur dioxide emissions by coal-fired power plants. In 2005,

the European Union launched a large-scale cap-and-trade system for greenhouse gas emissions–the E.U.

Emissions Trading Scheme. Similarly, the State of California is currently rolling out a cap-and-trade

system for greenhouse gases as part of the Global Warming Solutions Act ([Barringer, 2011]). A popular

argument against Cap-and-Trade is that it is vulnerable to market manipulations by firms who try to

bypass pollution regulations at the expense of society ([Shapiro, 2007], [Stiglitz, 2007]). Collusion is not

possible under the Tax mechanism, because the firms’ responses are independent of each other. Under

Cap-and-Trade, however, trading may give firms a strategic lever to alter the conditions of competition

in the output market. We examine the potential for collusive behavior and its consequences using a

rigorous yet rich model of production and pollution under competition that allows for the possibility of

collusion among firms via trading, using the Tax mechanism as a benchmark.

We derive the Subgame-Perfect Nash equilibria for a series of games involving a regulator and two

profit-maximizing firms. First the regulator chooses a mechanism (Tax or Cap-and-Trade) to achieve a

specified pollution limit. Then the firms maximize profits within the constraints of the regulation. We
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model the processes of pollution generation, pollution abatement and pollution regulation to analyze

several related questions: does cap-and-trade enable collusion between the regulated firms? If collusion

is possible, what is its effect on firms, consumers and society as a whole? What can the regulator do to

limit the possibly negative consequences of collusion?

2 Literature Review

From Arthur Pigou (1932) to the modern sustainability movement, the mitigation of environmental ex-

ternalities has been a subject of inquiry for generations of environmental economists (see [Cropper and Oates, 1992]

for a review). When the number of people impacted by pollution is large, pollution externalities cannot

be resolved through bilateral transactions, and some form of government intervention is warranted. Tax-

ation and cap-and-trade are two popular market-based mechanisms, and there is a vast literature that

broadly debates the merits of these alternatives ([Baumol and Oates, 1988]). [Goulder and Parry, 2008]

provide a nice and concise review of this literature in a conceptual framework that includes a broad

set of criteria ranging from cost considerations (including administrative costs and the distribution of

compliance costs across income groups), to the role of uncertainty, to political feasibility, to the impact

of the mechanisms on R&D and technology deployment.

Several researchers have analyzed regulatory alternatives to taxes and caps, such as subsidies for

pollution abatement and legal mandates requiring firms to disclose information, recycle or dispose used

products. [Nault, 1996] shows the equivalence of subsidies and taxes in terms of output, pollution dam-

age and welfare. [Levi and Nault, 2004] study how the regulator can induce firms to make a conversion

in production technology to help the environment, comparing subsidies and tax-based programs when

firms vary in the type, age, quality of maintenance and general condition of their production technology.

[Kalkanci et al., 2012] find that voluntary disclosure of a firm’s environmental footprint leads to more

learning by the firm and lower environmental impact than mandatory disclosures. [Atasu et al., 2009],

[Subramanian et al., 2009] and [Jacobs and Subramanian, 2012] study extended producer responsibility,

a mechanism wherein the manufacturer is legally responsible for collecting and treating some fraction of

end-of-use products, thus supporting recycling or disposal. [Plambeck and Taylor, 2010] study compet-

itive testing and whistle-blowing as a means to achieve compliance on environmental, health and safety

standards. [Keskin and Plambeck, 2011] study the effect of accounting rules on allocation of carbon

emissions across coproducts serving a domestic and an export market. They find that letting the firm

choose the allocation rule, as is current practice, can contribute to higher emissions, and identify the

allocation rule that leads to the lowest emissions. [Subramanian et al., 2007] study the firms’ reponses

to a system of auctioned emission allowances, but trading is not considered.

In a seminal paper, [Weitzman, 1974] shows that in perfectly competitive markets, absent uncer-

tainty in the costs and benefits of taxation, a price-based approach is analytically equivalent to a quota-

based method like cap-and-trade in perfectly competitive markets. This basic finding underscores the

conventional wisdom that, on purely efficiency grounds, Tax and Cap-and-Trade are equivalent. Both
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allow firms to reduce their pollution at the lowest aggregate costs. [Weitzman, 1974] goes on to reveal

an important asymmetry between price and quantity controls in the presence of uncertainty, where

uncertainty arises from genuine randomness, difficulties in measuring the costs and benefits of pollution

control or information asymmetries between firms and regulators. Weitzman’s main theorem identifies

conditions under which price controls dominate quantity controls and vice versa. These conditions

depend on the relative steepness of the marginal cost and benefit functions. [Adar and Griffin, 1976]

derive similar results using graphical proofs in which the marginal control cost curves and the marginal

damage functions are assumed linear. Our model does not include any uncertainty: we assume that

the costs and benefits of pollution control are known with certainty and are common knowledge. An

important departure of our paper from Weitzman’s work is that we relax the assumption of perfect

competition to focus on strategic behaviors by regulated firms holding some market power in the out-

put market. We are interested in comparing emission taxes and cap-and-trade in a rich operational

context in which asymmetric firms strategically choose their production quantities and exert effort to

abate their pollution within the constraints of the mechanism chosen by the regulator.

2.1 Regulation of monopolies

[Barnett, 1980], [Requate, 1993a] and [Anand and Giraud-Carrier, 2012] study pollution regulations un-

der the polar case of pure monopolies (see also [Requate, 2006]). This literature shows that, in order

to comply with pollution control regulations, firms exercise their market power to reduce output (or

increase their prices) even further. To compensate for this welfare loss, the regulator should set the

tax rate at less than the marginal cost of pollution. [Requate, 1993a] shows the equivalence between

emission taxes and cap-and-trade in a model where n local monopolies can reduce pollution only by

reducing output. [Anand and Giraud-Carrier, 2012] show this equivalence when the firms can exert

effort to abate pollution in addition to reducing output. Furthermore, they show that Tax and Cap-

and-Trade can mimic the Groves mechanism, a theoretical benchmark from the public good literature,

which forces each firm to internalize exactly the extra pollution damage (and no more) that its produc-

tion and abatement decisions inflict on society. The Groves mechanism is the gold standard for fairness

because it perfectly effectuates the ”polluter pays” principle ([OECD, 1972]), but it is impractical.

2.2 Regulation under oligopoly

[Requate, 2006] reviews several papers studying pollution regulations (especially emission taxes) under

imperfect competition, specifically Cournot and Bertrand oligopolies. [Requate, 1993b] and [von der Fehr, 1993]

are closely related to ours. In [Requate, 1993b] two asymmetric firms with linear production technolo-

gies compete à la Cournot. The firms differ in their marginal production costs and emission rates.

Production generates pollution, and the firms have no other abatement option than reducing output.

This latter assumption means that a stringent regulation (i.e., a high tax rate or a small allocation of

emission allowances) could cause one of the firms to shut down. Requate compares a linear emission

Tax to a Cap-and-Trade system in which firms trade to maximize their joint profits. In other words,
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Pareto efficiency is the driving force of the trading equilibrium. He shows that Tax and Cap-and-Trade

differ from each other; neither can implement the welfare-maximizing outcome; and no mechanism is

always superior to the other. However, there is a range of parameters for which Cap-and-Trade yields

a higher welfare than Tax, but this result applies only in the extreme case when it is socially optimal

for the more polluting firm to shut down.

[von der Fehr, 1993] specifically looks at the risk of collusion under Cap-and-Trade. He studies the

firms’ incentives to use Cap-and-Trade strategically to increase their market power (i.e., monopolize) or

exclude entry. He models a symmetric Cournot duopoly (i.e., the firms have the same cost structure)

in which the firms are initially allocated a different number of emission allowances on account of their

different sizes. By trading, the dominant firm can influence the permit price to lower its own abatement

costs, and improve its strategic position in the output market; this manipulation also impacts its rival’s

cost structure. Thus, strategic interactions in the trading market are likely to distort competition

in the output market. Von der Fehr studies the effect on the firms’ joint profits of a reallocation of

emission allowances between them. If Pareto-improving trades exist, the firms have an incentive to

collude. Von der Fehr shows that, if the products are homogenous, monopolization can occur (under

some conditions on the firms’ cost structures). However, monopolization is less likely when the products

are differentiated and the cost functions exhibit diseconomies of scale. He goes on to show that, if the

quantities are strategic substitutes, the exercise of market power in the output market causes firms to

overinvest in emission rights. This is because buying more emission rights lowers the buyer’s marginal

cost, which makes it more aggressive in the output market. The rival facing a decreasing output price

is forced to reduce its production quantity, which improves the profits of the first. This is an example

of a Top-Dog commitment strategy in which the decision to overinvest (i.e., act tough) causes the rival

to behave less aggressively. This result follows from the assumption that marginal costs are decreasing

in the number of emission rights.

[Hahn, 1984] was the first to study the situation in which a firm exercises power in the trading

market, but the output market is perfectly competitive. He shows that the firm will tend to buy

(sell) too few emission allowances in order to keep the allowance price down (up). Our contribution is

threefold:

• We analyze two different trading mechanisms: in the first one, trading occurs at the time of

production. This means that the production, abatement and trading decisions are simultaneous.

We call this mechanism the single-stage Cap-and-Trade model. As we shall see, trading leads to

the marginal abatement costs being equal across firms, which implies that the aggregate costs of

compliance to the overall cap are minimum. In the second, the firms trade to maximize their

joint profits before production is realized. Thus Pareto optimality is driving the trading between

the firms, as in [Requate, 1993b] and [von der Fehr, 1993]. This Pareto-optimal Cap-and-Trade

is called the two-stage model. This distinction offers a clean and insightful comparison of the

mechanisms in a manner not previously done. By comparing two variants of Cap-and-Trade to

the Tax mechanism under which no collusion is possible, we are able to generate new insights
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into the firms’ incentives to collude and their levels of commitment. [von der Fehr, 1993] finds

that collusion is possible under limited conditions. We show that it is unavoidable. Contrary to

[von der Fehr, 1993], we show that firms underinvest in trading under collusion.

• We develop a richer model, which allows for a more detailed analysis, by disentangling the firms’

production, abatement and trading decisions. In [Requate, 1993b], the firms can reduce pollution

only by reducing output, and there is no alternative way to abate pollution. In [Requate, 2006,

chapter 7], this assumption is relaxed but the model becomes intractable. In [von der Fehr, 1993],

emission allowances serve as a proxy for production, in the sense that firms cannot produce without

emission allowances; so capturing permits from the other firm restricts its production capacity,

and could push the firm out of the market. Furthermore, [von der Fehr, 1993] does not explicity

model the trading process. In our paper, we allow the firms to choose their production quantities,

levels of abatement and trading quantity as three separate decision variables. We distinguish and

explicitly model the processes of production, pollution generation, abatement and regulation. Our

closed form solutions make it possible to compare outcomes, including output, abatement efforts,

firm profits, consumer surplus, and welfare.

• Finally, we generalize the polar cases of monopoly and duopoly by considering markets of imperfect

substitutes. As we shall see, the coefficient of substitutability is a key parameter in our analysis.

3 The Model

3.1 Modeling Pollution

Consider a firm whose production generates a harmful pollutant. We model four interrelated aspects

of pollution: (i) Pollution generation: This relates the quantity of pollution emitted to the production

quantity q as well as to the degree of pollution abatement; (ii) Pollution abatement : This describes,

contrary to [von der Fehr, 1993], how the firm can (fully or partially) abate the pollution it generates,

and the costs of abatement; (iii) Pollution damage: This quantifies the disutility to society from pol-

lution; and, finally (iv) Pollution regulation: This describes the mechanisms that the regulator could

employ to control pollution. We explicitly model these mechanisms, in particular the trading process.

We discuss each of these four elements below.

3.1.1 Pollution generation

Let P̃ denote the total quantity of pollution emitted by the firm. Clearly, the quantity of pollutant

should be an increasing function of production. We further assume that the total pollution P̃ (prior to

any investment in abatement) is proportional to the production quantity q; i.e., P̃ = e · q where e ≥ 0

is the emissions rate. Several factors suggest that our linearity assumption is reasonable in the context

of many industrial sectors. Pollution concentrations arise from diffusion patterns which, by the law of

conservation of mass, are typically linear in the quantity of pollution released. In many industries– the
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power generation industry being a classical example–the output and the pollution generated are linear

functions of fuel consumption, and hence, of each other. Without loss of generality, we normalize e to

1, i.e., P̃ = q.

3.1.2 Pollution abatement

Our model of pollution abatement relies on two complementary notions: (i) the abatement level, which

determines how much pollution is abated, and (ii) the cost of abating pollution. In our model, the

firm can control the quantity of pollution it generates (albeit at a cost) by setting the abatement level,

denoted by x, where x ∈ [0, 1]. The decision variable x can be interpreted as the percentage of pollution

abated. In other words, q · x is the quantity of pollution abated. The relation between the net (or

residual) pollution P , the total pollution P̃ and abatement is modeled as P = P̃ − q · x = q · (1− x).

At one extreme, when x = 0, the pollution is unabated (hence, P = P̃ = q). When x = 1, the pollution

is completely abated and P = 0. Intermediate values of x correspond to partial abatement.

In our model, we assume that pollution abatement costs are increasing and convex in the quantity

of pollution abated (which is q ·x). Specifically, we assume that the pollution abatement cost C(q;x) =

c · (q · x)2 , where c is the abatement cost coefficient, q the production quantity, and x the percentage

of pollution abated. We justify our assumption of a convex abatement cost curve on several grounds:

(i) It is logical that the first units of pollution are easy to abate, but once the low-hanging fruits

have been exploited, pollution abatement becomes increasingly difficult. (ii) [Hartman et al., 1997]

estimate the cost of pollution abatement for 7 common air pollutants, namely particulates2, sulfur oxides,

nitrogen dioxide, carbon monoxide, hydrocarbons, lead and other hazardous emissions, using census data

from 100,000 U.S. manufacturing firms across 37 industrial sectors. They find support for quadratic

abatement cost curves in several industrial sectors. (iii) Quadratic abatement costs are commonly

assumed in the extant academic literature (cf. [Subramanian et al., 2007], [Parry and Toman, 2002]).

[Nault, 1996] and [Levi and Nault, 2004] assume a convex, but not necessarily quadratic, cost function.

3.1.3 Pollution damage

Pollution affects human health, wildlife habitat, and the natural environment. In a widely cited study,

[Pope et al., 2002] found that a 10 µg/m3 increase in fine particulate air pollution was associated with an

increased risk of all-cause, cardiopulmonary, and lung cancer mortality, by 4%, 6%, and 8% respectively.

Particulates contribute to the creation of haze, increase the acidity of lakes and rivers, and alter the

balance of nutrients in waters and the soil3. Sulfur dioxide, another common air pollutant, contributes

to acid rains, which cause widespread damage to surface waters, aquatic animals, forests, crops and

buildings.

The pollution damage function, which we introduce next in our model, captures both present and

future damage to society from emissions. Clearly, pollution damage would be increasing in the net pollu-
2Particulates are a mixture of fine solid particles and liquid droplets suspended in the air.
3http://www.epa.gov/air/particlepollution/health.html
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tion generated ([Nault, 1996]; [Jacobs and Subramanian, 2012]). Furthermore, [Tietenberg and Lewis, 2011]

suggests that “the marginal damage caused by a unit of pollution increases with the amount emitted”

[Page 359]. Intuitively, while pollution is tolerable in small quantities, the damage from pollution in-

creases with the quantity of pollution at an increasing rate. Also, the vast majority of epidemiological

studies use either a log-linear or logistic functional form, suggesting that epidemiologists generally be-

lieve that the health impact of pollution is convex in the pollution concentration. Thus we model the

pollution damage function D(P ) as an increasing, convex function of the net total pollution, P . Specif-

ically, we let D(P ) = d · P 2, where d ≥ 0, the pollution damage factor, varies with the pollutant under

consideration. A high value of d indicates a very toxic pollutant, whereas low d suggests a pollutant

with moderate, albeit still harmful, impact on society.

3.1.4 Pollution regulation

As mentioned previously, we focus on two popular mechanisms:

• The Tax mechanism. Under the Tax mechanism, the regulator charges the firm with a fee

proportional to its emissions. Under this mechanism, the tax is equal to τ · [q · (1− x)] where

q · (1− x) is the net pollution generated by the firm and τ ≥ 0 is the tax rate set by the regulator,

common to all firms. By increasing the tax rate, the regulator makes pollution more costly to the

firm causing it to reduce its emissions. Thus the regulator can strategically set the tax rate to

achieve a particular emission reduction goal.

• The Cap-and-Trade mechanism. Under Cap-and-Trade, the regulator specifies a limit on

emissions but firms are allowed to trade with each other. At the end of each year, each firm

must surrender a number of allowances equal to its actual emissions, or pay a hefty fine. Based on

scientific, historical and political considerations, the regulator typically assigns a cap for the entire

region. Let S denote this cap. In the early stages of Cap-and-Trade implementation, each firm

typically receives for free an endowment of emission rights. The sum of these initial endowments

equals the overall cap S for the region. Free allocation is called “grandfathering”. Most cap-and-

trade programs make provisions in later stages for auctioning of the emission allowances, either in

part or in full. It is important to note that the equilibrium outcome is independent of the allocation

mechanism (whether grandfathered or auctioned off). The firms’ optimal production schedule is

unaffected by the allocation mechanism chosen by the regulator [Requate, 2006], although the

firms’ profits are. We will hereafter assume that the firms are initially given the same allocation.

This assumption does not impact our results, but has the advantage of making the exposition

clearer. Under Cap-and-Trade, the regulator does not need to know anything about firms’ cost

structures. Further, even if firms know their own cost curves but not necessarily those of other

firms, participation in the market for emission allowances reveals the relevant information through

the price mechanism ([Hayek, 1945]). So Cap-and-Trade provides an alignment of decision rights

with information. Let s denote the pollution cap imposed on an arbitrary firm, i.e., s = S
2 , and
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t be the number of emission allowances traded by the firm. Without loss of generality, t ≥ 0

indicates that the firm is a net seller of allowances, and t < 0 that the firm is a net buyer. The

firm’s constraint is q · (1− x) ≤ s− t.

To allow meaningful comparisons between Tax and Cap-and-Trade, we further assume that the

regulator’s goals are the same: that the total pollution does not exceed an amount S.

3.2 Modeling firms, the regulator and their interactions

In the model, we consider two firms, designated by subscripts i and j, and study the strategic interactions

among them and a pollution-sensitive regulator. Our firms have some market power and compete with

each other. We study the case of imperfect substitutes with a market demand for firm i characterized by

the linear inverse demand curve pi = a− b · qi−γ · b · qj where a > 0, b > 0, 0 ≤ γ ≤ 1, qi is the quantity

produced by firm i for market i, qj the quantity serving market j, and pi is the price. Similarly, the price

pj in market j is determined by the quantities qj and qi as follows: pj = a− b · qj−γ · b · qi. When γ = 0,

the firms are local monopolies. The case γ = 1 is the classical Cournot duopoly. Intermediate values of γ

correspond to situations in which the market price that firm i can charge is determined not only by firm

i’s production quantity, but also in part by the quantity produced in the other market. The parameter γ

captures the intensity of the competition between the firms. Many products fit such a description. Even

when the product is a commodity, there may be some heterogeneity between customers; for example,

some customer segments may have a preference for products locally supplied.

Firm i has an abatement cost coefficient ci. Thus its pollution abatement cost is Ci = ci · (qi · xi)2,

where qi · xi is the quantity of pollution abated by firm i (recall section 3.1.2). Similarly for firm j.

Without loss of generality, we assume that 0 < ci ≤ cj . Note that when ci = 0, pollution abatement

is costless. The firm can effortlessly ensure that the pollution constraint is not binding. This implies

that the problem coincides with the unregulated case or business-as-usual. From now on, we will let

cl = ci and ch = cj , and we will use the subscript l to denote the low-cost firm; i.e., the firm with a

low abatement cost coefficient cl, and the subscript h to denote the high-cost firm, which has a high

abatement cost coefficient ch. We assume that cl and ch are common knowledge.

Abatement cost coefficients vary across pollutants, geographic regions and industries. Even for the

same pollutant and the same product, these coefficients vary across different abatement technologies, and

even across abatement technologies of different vintages ([Hartman et al., 1997], [Creyts et al., 2007],

[U.S. Census Bureau, 2005], [Pittman, 1981], [Swinton, 1998]). Firms maximize their profits. Firm i’s

profit (i = l or h) πi (qi, xi|qj) = qi · (a− b · qi − γ · b · qj) − ci · (qi · xi)2 is the difference between its

revenues and its pollution abatement costs. We assume that all other production costs, whether fixed

or variable, are zero. It is straightforward to relax this assumption in our analysis; nevertheless, this

assumption enables us to minimize clutter. The firms’ joint profits or industry profits are denoted

Π = πl + πh.
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3.3 Performance measures

The performance measures we use to evaluate the two mechanisms include the total output, the total

abated pollution, firms’ profits, consumer surplus and social welfare. We augment the concept of con-

sumer surplus (and by extension, welfare) to include environmental effects. The traditional measure of

consumer surplus focuses solely on consumers’ economic surplus (CES). CES is the monetary gains

enjoyed by consumers from the acquisition of a good or service, and is measured as the difference be-

tween their willingness-to-pay and the price they actually pay. A pollution-sensitive regulator should be

concerned not only with the welfare of consumers measured in monetary terms, but also with society’s

disutility from pollution, which is the pollution damage D(P ). Thus we measure consumer surplus as

CS = CES −D(P ). Social welfare, measured as the sum of producers’ profits (i.e., the joint profits Π)

and the consumer surplus, automatically incorporates the effects of pollution damage as well. In this,

we follow the approach adopted by [Nault, 1996], [Jacobs and Subramanian, 2012] and others. Welfare,

W = Π + CS = Π + CES − D. Using this augmented measure of social welfare, our model helps

us study the trade-offs between pollution and production for society, between the benefits of pollution

abatement and economic efficiency, and between consumers’ monetary utility from consumption and

their disutility from pollution. Our model also enables comparisons of the different pollution control

mechanisms along these different dimensions.

Our notations are summarized in Table 1.

qi Production quantity chosen by firm i, i = l or h , qi≥ 0

γ Competition coefficient, 0 ≤ γ ≤ 1

pi Price in firm i’s market, pi= a− b · qi−γ · b · qj , a > 0, b > 0

xi Pollution abatement level chosen by firm i, 0 ≤ xi≤ 1

ci Abatement cost coefficient of firm i, ci∈{cl, ch} , 0 < cl≤ ch
Pi Pollution generated by firm i, Pi= qi· (1− xi)
P Total pollution generated by the firms, P =

∑2
i=1 Pi

πi Profit of firm i

Π Firms’ joint profit, Π =
∑2

i=1 πi

d Pollution damage factor, d ≥ 0

D Pollution damage, D = d · P 2

CES Consumer economic surplus

CS Consumer surplus CS = CES −D
W Social welfare W = Π + CS

s Cap chosen by the regulator for one firm, s ≥ 0

ti Number of emission allowances traded by firm i

τ Tax rate, τ ≥ 0
Table 1 – Summary of Model Notations
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4 Equilibrium Analysis

4.1 The Tax Mechanism

As mentioned previously, under the Tax mechanism, the regulator charges a tax proportional to the

firm’s emissions, i.e., firm i pays a tax τ · qi · (1− xi), where τ is the linear tax rate and qi · (1− xi)
is firm i’s emissions. Stavins (2003) identifies seven subcategories of environmental taxes. With the

exception of fixed administrative charges such as permit fees, taxes are almost universally linear in

the pollution generated. Linear taxes are simple to understand and implement, and moreover, are

analytically tractable. Furthermore, [Anand and Giraud-Carrier, 2012] have shown that a linear tax is

optimal for pollution control, whereas a quadratic tax is not.

In choosing the tax rate τ , the regulator anticipates firms’ reactions, and chooses the minimum τ

to ensure that the total pollution generated by the firms is at most 2 · s. Then, each firm chooses its

production quantity and pollution abatement level to maximize its profits net of pollution taxes. Firm

i’s objective is

max
qi≥0, 0≤xi≤1

πi (qi, xi|qj) = qi · (a− b · qi − γ · b · qj)− ci · (qi · xi)2 − τ · qi · (1− xi)

We solve the two-stage game of our model using backward induction. First, we solve for the firms’

optimal production quantities and abatement levels as a function of τ . Then we plug the firms’ decisions

into the regulator’s problem, which is to find the minimum τ such that P ≤ S. Theorem 1 shows that

there is a unique Subgame-Perfect Nash Equilibrium for the two-stage Tax game. All proofs are in the

technical appendix.

Theorem 1. Let s1 = a
b(γ+2) and s2 = a(ch−cl)

2ch(b(2+γ)+2cl)
.

Case 1 (Unfettered duopoly): s > s1. The optimal tax rate is τ = 0. The optimal production

quantities and abatement levels are ql = qh = a
b(γ+2) , xl = xh = 0.

Case 2: s2 ≤ s ≤ s1. The optimal tax rate is τ = 4clch(a−(2+γ)bs)
(2+γ)b(cl+ch)+4clch

. The optimal production quantities

and abatement levels are ql = qh = a(cl+ch)+4clchs
b(2+γ)(cl+ch)+4clch

, xl = 2ch(a−b(2+γ)s)
a(cl+ch)+4clchs

and xh = 2cl(a−b(2+γ)s)
a(cl+ch)+4clchs

.

Case 3: 0 ≤ s < s2. Let β = 2
√

(b+ cl) (b+ ch). The optimal tax rate is τ = 2ch
a(b(2−γ)+2cl)−2b(b(4−γ2)+4cl)s

β2−γ2b2
.

The optimal production quantities and abatement levels are ql = a(b(2−γ)+2ch)−4γbchs

β2−γ2b2
, qh =

a(b(2−γ)+2cl)+8ch(b+cl)s

β2−γ2b2
, xl = 1 and xh =

a[b(2−γ)+2cl]−2b[b(4−γ2)+4cl]s
a(b(2−γ)+2cl)+8ch(b+cl)s

.

Above s1, the regulatory constraint is slack, and we get the unfettered duopoly outcome. The firms

do not abate any pollution. Below s1, and as the regulator increases the regulatory stringency by

increasing the tax rate (i.e., s decreases), the firms reduce output and simultaneously abate pollution.

The low-cost firm abates more pollution than the high-cost firm. At s2, the low-cost firm reaches 100

percent abatement. Additional pollution reductions are achieved by output reduction and by the high-

cost firm increasing its abatement effort. The low-cost firm produces more than the high-cost firm for

any s. See figure 2 for a graph of the production quantities and abatement efforts as a function of s.
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Figure 2: Production quantities and abatement levels under the Tax mechanism (a = b = 1, cl = .3, ch =

1, γ = .5.

4.2 The Cap-and-Trade Mechanism

In the Cap-and-Trade mechanism, the regulator assigns a cap, denoted s, to each firm, and firms have

the option of trading emission allowances amongst themselves. Recall that ti denotes the number

of emission allowances sold by firm i (a negative ti means that the firm is a net buyer of emission

allowances). Clearly ti ≤ s, because a firm can only sell allowances up to its initial endowment. Firm

i’s problem is given by:

max
qi≥0, 0≤xi≤1, ti≤s

πi (qi, xi, ti|qj) = qi · (a− b · qi − γ · b · qj)− ci · (qi · xi)2 + r · ti

where r is the price of emission allowances at which the firms trade, i.e., the market clearing price.

Firm j solves a similar problem. The market clearing condition stipulates that the demand for emission

allowances equals the supply, i.e., ti + tj = 0. Rewrite ti = t; the market clears if there exists a price

r ≥ 0 such that tj = −t.
Theorem 2 shows that there is a unique Nash Equilibrium of the Cap-and-Trade game.

Theorem 2. The production quantities and abatement levels under Cap-and-Trade are the same as

the Tax mechanism.

Case 1 (Unfettered duopoly): When s > s1, the firms do not trade (i.e., t = 0).

Case 2: When s2 ≤ s ≤ s1, the low-cost firm sells t = (ch−cl)[a−b(2+γ)s]
(2+γ)b(cl+ch)+4clch

emissions allowances at a price

r = 4clch(a−(2+γ)bs)
(2+γ)b(cl+ch)+4clch

to the high-cost firm.
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Case 3: When 0 ≤ s < s2, the low-cost firm sells all its emission allowances (i.e., t = s) a price

r = 2ch
a(b(2−γ)+2cl)−2b(b(4−γ2)+4cl)s

β2−γ2b2
to the high-cost firm.

Because of its cost advantage, it is optimal for the low-cost firm to abate more pollution and sell

emission allowances to the high-cost firms. Trading is always from the low-cost firm to the high-cost

firm (i.e., ∀s, t ≥ 0). Trading benefits both firms: the low-cost firm earns additional revenues from

the sale of emission allowances, and the high-cost firm is better off purchasing some allowances rather

than abate at a high and costly level. Trading happens only when the low-cost firm has a distinct cost

advantage (i.e., cl < ch).

As expected, the Cap-and-Trade and Tax mechanisms induce identical output and abatement levels

from firms. Consequently, firms’ total output, total abated pollution, consumer economic surplus,

consumer surplus and social welfare are identical under the two regimes. Firms’ profits are greater

under Cap-and-Trade than under Tax. The expressions for the firms’ profits are found in the technical

appendix. The difference is accounted for by the pollution tax paid to the regulator: ∀s, ∀i, πcti ≥ πti.

The difference πcti −πti is exactly equal to the emission taxes paid by firm i to the regulator, viz., τ ·s, ∀s;
the tax rate τ is equal to the Cap-and-Trade equilibrium (market-clearing) price r.

The effect of either mechanism is to shift the burden of pollution abatement from the high-cost firms

to the low-cost firms. Under Cap-and-Trade, low-cost firms are rewarded for bearing a higher load

of the pollution reduction through the sale of surplus emission permits. Under Tax, they abate more

pollution simply because abatement is cheaper than paying more emission taxes, until their marginal

cost of pollution abatement equals the tax rate.

Interestingly, this equivalence under Cap-and-Trade and Tax proves that no collusion occurs under

the single-stage Cap-and-Trade, because the outcome is the same as under the Tax mechanism under

which collusion is impossible.

4.3 Pareto Optimality

In the previous section, we have described a Cap-and-Trade mechanism where the market-clearing price

is the driving force of the equilibrium. We found a unique price at which the volume of allowances

offered by the low cost firm equals the demand from the high cost firm. As it turns out, this price

is equal to the marginal abatement cost of the firms, and is the shadow price of the firms’ pollution

constraints. We did not impose any additional condition on the equilibrium. A natural question is to

determine if the equilibrium in Theorems 1 and 2 is Pareto-optimal. Remember from our discussion

in the literature review that [von der Fehr, 1993] and [Requate, 1993b] use Pareto optimality as the

trading objective in their Cap-and-Trade models.

In a Pareto-optimal trade, it is impossible to make one of the firms better off without hurting the

other firm. Pareto optimality is a powerful criterion because, given different options, the firms are

likely to prefer a Pareto optimal equilibrium. Pareto optimality requires that the firms maximize their

joint profits. In other words, the firms trade to make the pie as big as possible, and then figure out a
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way to share the profits. The trading price may not be unique and will typically depend on the firms’

bargaining power; however, the trading price being simply a transfer between firms does not affect total

firms’ profits, consumer surplus or welfare. With this in mind, consider the following timeline for the

Cap-and-Trade mechanism:

First, the regulator chooses and assigns a cap s to each firm (as before). Second the firms trade with

each other to maximize their joint profits. Third and finally, the firms play the Cournot game. This

scenario differs from the previous one in the timing of the trade. In the previous scenario (section 4.2),

the firms trade at the time of production. In other words, the production, competition and trading

stages are simultaneously. In the alternative scenario (current section), the trading is decoupled from

production/competition, and occurs before. At the time of trading, the firms anticipate each other’s

reaction in the final stage of the game and focus on executing a Pareto-optimal trade. By placing

trading before production, we allow the firms to use the ability to trade as a strategic lever in the

Cournot game. Formally, the firms solve the following problem:

1. Trading: choice of t

max
−s≤t≤s

Π = ql · (a− b · ql − γ · b · qh) + qh · (a− b · qh − γ · b · ql)− cl · (ql · xl)2 − ch · (qh · xh)2

where ql, qh, xl and xh are determined by the Cournot game below, and are functions of t.

2. Cournot competition: choice of ql, qh, xl and xh

max
ql≥0, 0≤xl≤1

πl (ql, xl|t, qh) = ql · (a− b · ql − γ · b · qh)− cl · (ql · xl)2

s.t. ql · (1− xl) ≤ s− t

max
qh≥0, 0≤xh≤1

πh (qh, xh|t, ql) = qh · (a− b · qh − γ · b · ql)− ch · (qh · xh)2

s.t. qh · (1− xh) ≤ s+ t

We solve by backward induction. Theorem 3 gives the unique Subgame-Perfect Nash Equilibrium

of the multiple-stage Pareto-optimal Cap-and-Trade game.

Theorem 3. Recall that β = 2
√

(b+ cl) (b+ ch).

Let s3 =
a(ch−cl)(b2γ2+(1−γ)β2)

ch[4β2(b+(1−γ)cl)−bγ2((8−γ2)b2+8bcl+12bch+12clch)] ,

s4 =
a[b(2−γ)2(4+γ)+2ch(8−γ(6+γ))]

2b[b(4−γ2)2+4ch(4−3γ2)] ,

s5 =
a(b2(2−γ)2(clγ+ch(4+γ))+2bch(8−γ(6+γ))(cl+ch)+16clc

2
h(1−γ))

2bch(b2(4−γ2)2+2b(cl(8−γ(4+γ(2+γ)))+2(4−3γ)ch)+8clch(2−γ−γ2))
There exists a unique s ∈ [s4, s5] such that:

Case 1: s ≥ s. The optimal trade is t =
2a[b(2−γ)2+4(1−γ)ch]
b[b(4−γ2)2+4ch(4−3γ2)] − s. The optimal production quantities

and abatement levels are ql =
a[b(2−γ)2(2+γ)+2ch[4−γ(2+γ)]]

b[b(4−γ2)2+4ch(4−3γ2)] , qh =
a[b(2−γ)2(2+γ)+8(1−γ)ch]
b[b(4−γ2)2+4ch(4−3γ2)] , xl = 0

and xh = b(2−γ)2γ
b(2−γ)2(2+γ)+8(1−γ)ch

.
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Case 2: s3 ≤ s < s. The optimal trade is t =
(ch−cl)[2a(b2γ2+(1−γ)β2)−bs(4β2−γ2((8−γ2)b2+12b(cl+ch)+12clch))]

4β2(b(cl+ch)+2(1−γ)clch)−bγ2((8−γ2)b2(cl+ch)+4b(3c2l +4clch+3c2h)+12clch(cl+ch)) .

The optimal production quantities and abatement levels are

ql =
(a(cl+ch)+4clchs)(2β2−bγ2(2(1−γ)b+2ch)−4γ(b+2cl)(b+ch))

4β2(b(cl+ch)+2(1−γ)clch)−bγ2((8−γ)b2(cl+ch)+4b(3c2l +4clch+3c2h)+12clch(cl+ch)) ,

qh =
(a(cl+ch)+4clchs)(2β2−bγ2(2(1−γ)b+2cl)−4γ(b+cl)(b+2ch))

4β2(b(cl+ch)+2(1−γ)clch)−bγ2((8−γ)b2(cl+ch)+4b(3c2l +4clch+3c2h)+12clch(cl+ch)) ,

xl = 1− s−t
qi

and xh = 1− s+t
qh

.

Case 3: 0 ≤ s < s3. The optimal trade is t = s. The optimal production quantities and abatement

levels are the same as the Tax mechanism.

4.4 The Evidence for Collusion

As can be seen from Theorems 1-3, the three mechanisms (Tax, single-stage Cap-and-Trade and multi-

stage Pareto-optimal Cap-and-Trade) are equivalent when s ≤ s3, except for the firms’ profits. The

firms’ profits under Tax are lower than under Cap-and-Trade by τ · S, which is the tax payment to the

regulator. The situation s ≤ s3 corresponds to a very stringent pollution cap requiring the low-cost firm

to abate all its pollution (i.e., xl = 1) and, under Cap-and-Trade, to sell all its emission allowances to

the high-cost firm. When s ≤ s3, the Tax and Cap-and-Trade mechanisms are Pareto optimal.

Assume now that s > s3 and consider the special case γ = 0. This corresponds to the firms

being local monopolies, i.e., the firms do not compete and have full market power in their respective

markets. As can be seen from Theorems 1-3, the Tax mechanism is Pareto optimal if and only if γ = 0.

When γ > 0, the firms’ response under Cap-and-Trade when their goal is to achieve Pareto optimality

is different from the Tax mechanism if s > s3. Figure 3 compares the trading volume under both

Cap-and-Trade mechanisms.

γ = 0 γ = .5 γ = 1

Figure 3: Trading volume under the single-stage (solid line) and multi-stage (dashed line) Cap-and-

Trade mechanisms.
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When implementing Cap-and-Trade, the regulator does not have any say in the timing of the trade.

It is the firms’ choice. By definition, the firms’ joint profits in the Pareto-optimal condition are greater

than under any other trading arrangement; this means that the Pareto-optimal equilibrium is a dominant

strategy. In other words, we can expect collusion under Cap-and-Trade when s > s3. Proposition 1

summarizes these results.

Proposition 1. The firms will collude under Cap-and-Trade if and only if γ > 0 and s > s3.

5 Performance Measures and Comparisons

The remainder of the paper consists in a comparison and discussion of outcomes and performance

measures under the simultaneous Cap-and-Trade (which is equivalent to the Tax mechanism) and the

two-stage Pareto-optimal Cap-and-Trade mechanism in order to understand the conditions under which

collusion can occur, and its consequences on firms, consumers and society.

*** DRAFT ONLY; UNFINISHED ***

γ = 0 γ = .5 γ = 1

Figure 4: Total output under single-stage (solid line) and multi-stage (dashed line) Cap-and-Trade

mechanisms.

6 Conclusion

Several years ago, research into the field of ‘supply chain management’ exploded in response to the

increasing importance of inter-firm operational issues. This research integrated inter-firm coordination,

information and agency issues within the framework of traditional research in Operations. Similarly,

sustainable operations is an increasingly important research area that expands the scope of traditional
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γ = 0 γ = .5 γ = 1

Figure 5: Firm joint profits under single-stage (solid line) and multi-stage (dashed line) Cap-and-Trade

mechanisms.

Figure 6: Consumer economic surplus under single-stage (solid line) and multi-stage (dashed line)

Cap-and-Trade mechanisms.
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d small d large

Figure 7: Consumer surplus under single-stage (solid line) and multi-stage (dashed line) Cap-and-Trade

mechanisms.

d small d large

Figure 8: Welfare under single-stage (solid line) and multi-stage (dashed line) Cap-and-Trade mecha-

nisms.
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supply chain management to include environmental considerations. [Kleindorfer et al., 2005] succinctly

summarize the case for research in sustainable operations, “The modelers (the OR-based OM popula-

tion) must revisit the classical models... to reformulate the objective function and the set of constraints...

in the new context.” [Emphasis added] In this spirit, our model contributes several analytical “building-

blocks”– notably of pollution generation, abatement, damage and regulation– that can be integrated

into traditional supply chain models for use by future researchers in sustainable operations.
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7 Appendix

7.1 Proofs

7.1.1 Proof of Theorem 1

The regulator charges a tax proportional to the firm’s emissions, i.e., firm i pays a tax τ · qi · (1− xi),
where τ is the linear tax rate and qi · (1− xi) is firm i’s emissions. In choosing the tax rate τ , the

regulator anticipates firms’ reactions, and chooses the minimum τ to ensure that the total pollution

generated by the firms is at most S. Then, each firm chooses its production quantity and pollution

abatement level to maximize its profits net of pollution taxes. Firm i’s objective is

max
qi≥0, 0≤xi≤1

πti (qi, xi|qj) = qi · (a− b · qi − γ · b · qj)− ci · (qi · xi)2 − τ · qi · (1− xi)

where the superscript t is for tax. We solve the two-stage game of our model using backward induction.

First, we solve for the firms’ optimal production quantities and abatement levels as a function of τ .

Then we plug the firms’ decisions into the regulator’s problem, which is to find the minimum τ such

that P ≤ 2s.

Write the Lagrangian

L = qi (a− bqi − γbqj)− ci (qixi)
2 − τqi (1− xi) + λiqi + µi1xi − µi2 (xi − 1)

where λi, µi1 and µi2 are Lagrange multipliers. The Kuhn-Tucker (KT) necessary conditions are:

a− γbqj − 2qi
(
b+ cix

2
i

)
− τ (1− xi) + λi = 0 (1)

qi (τ − 2ciqixi) + µi1 − µi2 = 0 (2)

with the complementary slackness conditions λiqi = 0, µi1xi = 0 and µi2 (xi − 1) = 0, and the feasibility

constraints 0 ≤ xi ≤ 1 and qi, λi, µi1, µi2 ≥ 0.

It is not possible for µi1 and µi2 to be simultaneously > 0.

First we show that µi1 = 0. Proof. (By contradiction.) Suppose on the contrary that µi1 > 0. Then

µi2 = 0 and xi = 0, and by equation (4) µi1 = −νiqi ≤ 0. �

We next show that λi = 0. Proof. If λi > 0 (i.e., qi = 0) the firm makes a profit of 0. If λi = 0, it

is easy to verify that, if qi and xi satisfy (1) , πti =
(
b+ cix

2
i

)
q2i ≥ 0. This shows that in equilibrium

λi = 0. �

There are 2 cases:

• µi = 0. Then τ = 2ciqixi. Substituting in (1), the term τxi cancels out with −2ciqix2
i and we get

qi =
a− τ − γbqj

2b
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We also have

xi =
τ

2ciqi

provided that qi > 0 and

τ ≤ 2ciqi

• µi > 0. Then xi = 1. Equation (1) gives

qi =
a− γbqj
2 (b+ ci)

µi > 0⇒ τ > 2ciqi

Next we solve the joint maximization problem corresponding to the Cournot game. There are 4

cases:

1. τ ≤ min {2clql, 2chqh} . The firms solve{
2bql + γbqh = a− τ
γbql + 2bqh = a− τ

From which we derive

ql = qh =
a− τ

b (2 + γ)

xl =
τ

2clql
=
b (2 + γ) τ
2cl (a− τ)

xh =
b (2 + γ) τ
2ch (a− τ)

Feasibility conditions are

τ ≤ min
{

2acl
b (2 + γ) + 2cl

,
2ach

b (2 + γ) + 2ch

}
=

2acl
b (2 + γ) + 2cl

If the above condition is satisfied, then ql > 0 and qh > 0.

The firms’ total pollution is

P = ql (1− xl) + qh (1− xh) =
4aclch − τ [b (2 + γ) (cl + ch) + 4clch]

2 (2 + γ) bclch

It is linear decreasing in τ . Thus the smallest τ such that P ≤ 2s is

τ∗1 =
4clch (a− (2 + γ) bs)

(2 + γ) b (cl + ch) + 4clch

0 ≤ τ∗1 ≤
2acl

b (2 + γ) + 2cl
⇐⇒ s2 ≤ s ≤ s1
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where s1 ≡ a
b(γ+2) and s2 ≡ a(ch−cl)

2ch(b(2+γ)+2cl)
.

The equilibrium production quantities and abatement levels are

q∗l = q∗h =
a (cl + ch) + 4clchs

b (2 + γ) (cl + ch) + 4clch

xl =
2ch (a− b (2 + γ) s)
a (cl + ch) + 4clchs

xj =
2cl (a− b (2 + γ) s)
a (cl + ch) + 4clchs

The firms’ optimal profits are

πtl =
(
b+ clx

2
l

)
q2l = bq2l + cl (qlxl)

2 = bq2l +
τ2

4cl

=
b [a (cl + ch) + 4clchs]

2 + 4clc2h (a− (2 + γ) bs)2

[b (2 + γ) (cl + ch) + 4clch]2

πth =
b [a (cl + ch) + 4clchs]

2 + 4c2l ch (a− (2 + γ) bs)2

[b (2 + γ) (cl + ch) + 4clch]2

Call this equilibrium point E1.

2. 2chqh < τ ≤ 2clql. The production quantities must solve{
2bql + γbqh = a− τ
γbql + 2 (b+ ch) qh = a

From which we derive

ql =
a [b (2− γ) + 2ch]− 2 (b+ ch) τ

b [b (4− γ2) + 4ch]

qh =
a (2− γ) + γτ

b (4− γ2) + 4ch

Let β2 = 4 (b+ cl) (b+ ch). The feasibility conditions are

2chqh < τ ≤ 2clql ⇐⇒
2ach

b (2 + γ) + 2ch
< τ ≤ 2acl [b (2− γ) + 2ch]

β2 − γ2b2

This is impossible because the RHS is less than the LHS.

3. 2clql < τ ≤ 2chqh. The production quantities must solve{
2 (b+ cl) ql + γbqh = a

γbql + 2bqh = a− τ
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From which we derive

ql =
a (2− γ) + γτ

b (4− γ2) + 4cl

qh =
a [b (2− γ) + 2cl]− 2 (b+ cl) τ

b [b (4− γ2) + 4cl]
xl = 1

xh =
τ

2chqh
=

b
[
b
(
4− γ2

)
+ 4cl

]
τ

2ch [a (b (2− γ) + 2cl)− 2 (b+ cl) τ ]

The feasibility conditions are

2clql < τ ≤ 2chqh ⇐⇒
2acl

b (2 + γ) + 2cl
< τ ≤ 2ach [b (2− γ) + 2cl]

β2 − γ2b2

The firms’ total pollution is

P = qh (1− xh) =
2ach [b (2− γ) + 2cl]− τ

[
β2 − γ2b2

]
2bch [b (4− γ2) + 4cl]

The smallest τ such that P ≤ 2s is

τ∗2 = 2ch
a (b (2− γ) + 2cl)− 2b

(
b
(
4− γ2

)
+ 4cl

)
s

β2 − γ2b2

2clql < τ∗2 ≤ 2chqh

⇐⇒ 2acl
b (2 + γ) + 2cl

< τ∗2 ≤
2ach [b (2− γ) + 2cl]

β2 − γ2b2

⇐⇒ 0 ≤ s < s2

The equilibrium production quantities and abatement levels are

ql =
a (b (2− γ) + 2ch)− 4γbchs

β2 − γ2b2

qh =
a (b (2− γ) + 2cl) + 8ch (b+ cl) s

β2 − γ2b2

xl = 1

xh =
a [b (2− γ) + 2cl]− 2b

[
b
(
4− γ2

)
+ 4cl

]
s

a (b (2− γ) + 2cl) + 8ch (b+ cl) s

The firms’ optimal profits are

πti =
(b+ cl) [a (b (2− γ) + 2ch)− 4γbchs]

2(
β2 − γ2b2

)2
πtj =

1(
β2 − γ2b2

)2 ×
[
a2 (b+ ch) (b (2− γ) + 2cl)

2 + 4γ2ab2ch (b (2− γ) + 2cl) s

+4bch
(
b3γ4 + 4 (b+ cl)

(
β2 − 2b2γ2

))
s2

]

Call this equilibrium point E2.
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4. τ > max {2clql, 2chqh} . The production quantities must solve{
2 (b+ cl) ql + γbqh = a

γbql + 2 (b+ ch) qh = a

From which we derive

ql =
a (b (2− γ) + 2ch)

β2 − γ2b2
> 0

qh =
a (b (2− γ) + 2cl)

β2 − γ2b2
> 0

xl = xh = 1

The feasibility conditions are

τ > max {2clql, 2chqh} ⇒ τ >
2ach [b (2− γ) + 2cl]

β2 − γ2b2

The firms emit no pollution. The minimum τ that satisfies the pollution constraint is simply

τ∗3 =
2ach [b (2− γ) + 2cl]

β2 − γ2b2

It is straightforward to verify that this equilibrium (case 4) is dominated by E2 because τ∗3 ≥ τ∗2

for all s ≥ 0.

τ∗1 is decreasing in s. We have

τ∗1 ≤
acl

b (2 + γ) + 2cl
(value at s = s2)

Case 4 is also dominated by E1 because τ∗3 is greater than this upper bound of τ∗1.

The second order condition verification is the same as the Cap-and-Trade model. (See the proof of

Theorem 2).

To summarize, the unique equilibrium is

E2 if 0 ≤ s < s2

E1 if s2 ≤ s ≤ s1
and τ∗ = 0 if s > s1

�
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7.1.2 Proof of Theorem 2

We assume that, if several trades are feasible and give the same payoff, the firms prefer the smallest

trading volume, i.e., t = arg min {|t| , ∀t feasible}. In particular, if t = 0 if feasible, the firms will choose

not to trade.

The firms’ problem is to solve the following joint-maximization problem:

max
ql≥0, 0≤xl≤1, tl≤s

π1
l (ql, xl, tl|qh) = ql · (a− b · ql − γ · b · qh)− cl · (ql · xl)2 + r · tl

subject to ql · (1− xl) ≤ s− tl
max

qh≥0, 0≤xh≤1, th≤s
π1
h (qh, xh, th|ql) = qh · (a− b · qh − γ · b · ql)− ch · (qh · xh)2 + r · th

subject to qh · (1− xh) ≤ s− th

and subject to the market clearing condition which stipulates that the demand for emission allowances

equals the supply, i.e., tl + th = 0. Rewrite tl = t; the market clears if there exists a price r such that

th = −t. Note that since ql ≥ 0 and xl ≤ 1, the pollution constraint guarantees that t ≤ s (and similarly

qh ≥ 0 and xh ≤ 1 and the pollution constraint qh (1− xh) ≤ s+ t imply that t ≥ −s).
Consider an arbitrary firm i. Write the Lagrangian

L = qi (a− bqi − γbqj)− ci (qixi)
2 + rti + λiqi + µi1xi − µi2 (xi − 1)− νi [qi (1− xi)− s+ ti]

where λi, µi1, µi2, νi and ξi are Lagrange multipliers. The KT conditions are:

a− γbqj − 2qi
(
b+ cix

2
i

)
+ λi − νi (1− xi) = 0 (3)

qi (νi − 2ciqixi) + µi1 − µi2 = 0 (4)

r = νi (5)

with the complementary slackness conditions λiqi = 0, µi1xi = 0, µi2 (xi − 1) = 0, and νi [qi (1− xi)− s+ ti] =

0, and the feasibility constraints 0 ≤ xi ≤ 1, and qi, λi, µi1, µi2, νi ≥ 0. These conditions are identical

to equations (1) and (2) of the Tax model with νi = τ . Thus we know that µi1 = 0.

Note that if s = 0, there are no emission allowances for sale, and we have t = tl = th = 0, because

although there may be some buyers, the supply is inexistent. The firms must abate all their pollution

by setting xl = xh = 1. The profit maximizing quantities satisfy the following:{
2 (b+ cl) ql + γbqh = a

γbql + 2 (b+ ch) qh = a

Recall that β2 = 4 (b+ cl) (b+ ch). The unique solution is

Production quantities Profits

ql = a(b(2−γ)+2ch)

β2−γ2b2
πl = a2 (b+ cl)

(b(2−γ)+2ch)2

(β2−γ2b2)2

qh = a(b(2−γ)+2cl)

β2−γ2b2
πh = a2 (b+ ch) (b(2−γ)+2cl)

2

(β2−γ2b2)2
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Note that the production quantities and the profits are positive, which means that the firms are

better abating all their pollution and competing than shutting down. We will henceforth assume that

s > 0.

Now back to the arbitrary firm i. Assume for now that λi = 0. (We analyze the case λi > 0, i.e.,

qi = 0 later.)

Rewrite µi2 = µi. There are 3 Lagrange multipliers leading to the following cases:

• µi = νi = 0 (The pollution constraint is slack):

Then r = 0.

(4)⇒ xi = 0 (assume for now that qi > 0.)

By equation (3)

qi =
a− γbqj

2b

We also have

qi ≤ s− ti

• µi = 0, νi > 0 (The pollution constraint binds):

νi > 0⇒ qi (1− xi) = s− ti ⇐⇒ qixi = qi − (s− ti) (6)

(4)⇒ νi = 2ciqixi (7)

Note that this case is feasible only if qi > 0 and xi > 0.

Combining (6) and (7) into (3), we get

qi =
a− γbqj + 2ci (s− ti)

2 (b+ ci)

Then

xi = 1− s− ti
qi
≤ 1

provided that

qi > s− ti (this condition guarantees that xi > 0)

We also have

r = νi = 2ciqixi

• µi > 0. Then xi = 1 and by equation (3), qi = a−γbqj
2(b+ci)

. We must have νi > 0, otherwise by (4)

µi = −2ciq2i ≤ 0.

νi > 0⇒ qi (1− xi) = 0 = s− ti ⇒ ti = s

This is a special case of the previous situation where the pollution constraint binds.
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To summarize, we have the following cases:

The pollution constraint is slack:

qi ≤ s− ti : qi =
a− γbqj

2b
, qi ≥ 0, xi = 0, r = 0

The pollution constraint binds:

qi > s− ti : qi =
a− γbqj + 2ci (s− ti)

2 (b+ ci)
, qi ≥ 0, xi = 1− s− ti

qi
, ti ≤ s, r = 2ciqixi > 0

Next we solve the joint maximization problem subject to the market clearing condition tl = t = −th.
First we show that the pollution constraints are either slack or binding for both firms.

Proof. This follows immediately from the condition that r = 0 if the pollution constraint is slack

and r > 0 otherwise. �

We first consider the cases where the pollution constraints are slack for both firms. The firms solve

the following system of equations: {
2bql + γbqh = a

γbql + 2bqh = a
(8)

From which we derive

ql = qh =
a

b (γ + 2)

We have r = 0. The feasibility conditions are

a

b (γ + 2)
− s ≤ t ≤ s− a

b (γ + 2)

In particular, we must have s ≥ s1 (s1 is defined in the proof of the Tax mechanism). Call this

stationary point S1.

The firms’ profits are

π1
l = π1

h =
a2

b (γ + 2)2

The firms will choose the trading volume corresponding to the smallest feasible |t|, i.e., t∗ = 0.

The final case is for both pollution constraints to bind. (See figure below for a representation of the

feasible region in the {s, t} space.)

The firms solve: {
2 (b+ cl) ql + γbqh = a+ 2cl (s− t)
γbql + 2 (b+ ch) qh = a+ 2ch (s+ t)

(9)

From which we derive

ql =
a [b (2− γ) + 2ch]− 2γbch (s+ t) + 4cl (b+ ch) (s− t)

β2 − γ2b2

qh =
a [b (2− γ) + 2cl]− 2γbcl (s− t) + 4ch (b+ cl) (s+ t)

β2 − γ2b2
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Figure 9: Representation of the feasible region in the {s, t} space.

The feasibility conditions

ql > s− t ⇐⇒ t >
(b (2− γ) + 2ch) (b (2 + γ) s− a)

b (2− γ) (b (2 + γ) + 2ch)
≡ f (s) (10)

qh > s+ t ⇐⇒ t <
(b (2− γ) + 2cl) (a− b (2 + γ) s)

b (2− γ) (b (2 + γ) + 2cl)
≡ g (s) (11)

A necessary condition is that s < s1. (This is because f and g are linear functions of s that intersect

at s1.)

f intersects the line −s at s = a(b(2−γ)+2ch)
2b(b(4−γ2)+4ch)

. g intersects the line s at s = a(b(2−γ)+2cl)
2b(b(4−γ2)+4cl)

.

Next we solve for the price r at which supply equals demand.

r = 2clqlxl = 2chqhxh ⇒ clqlxl = chqhxh (12)

Since the pollution constraints are binding, qhxh = qh − s − t and qlxl = ql − s + t. Thus equation

(12) is equivalent to

clql − chqh + (ch − cl) s+ (cl + ch) t = 0 (13)

Equation (13) is a linear function of t. Thus there is a unique t∗ that clears the market:

t∗ =
(ch − cl) [a− b (2 + γ) s]
b (2 + γ) (cl + ch) + 4clch
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It is straightforward to verify that t∗ > 0 for s < s1. t∗ intersects the line s at s2 (s2 is defined in

the proof of the Tax mechanism). Since

0 ≤ s2 ≤ s

we have that t∗ is feasible if and only if

s2 ≤ s ≤ s1

The optimal production quantities and abatement levels are

q∗l = q∗h =
a (cl + ch) + 4clchs

b (2 + γ) (cl + ch) + 4clch

x∗l =
2ch (a− b (2 + γ) s)
a (cl + ch) + 4clchs

x∗h =
2cl (a− b (2 + γ) s)
a (cl + ch) + 4clchs

r =
4clch (a− b (2 + γ) s)

b (2 + γ) (cl + ch) + 4clch

π1
l =

1
[b (2 + γ) (cl + ch) + 4clch]2

×


a2
(
b (cl + ch)2 + 4clc2h

)
+

4aclchs (γb (cl − ch) + 4cl (b+ ch))−
4bc2l chs

2
(
b (2 + γ)2 + 4 (1 + γ) ch

)
 (14)

π1
h =

1
[b (2 + γ) (cl + ch) + 4clch]2

×


a2
(
b (cl + ch)2 + 4c2l ch

)
+

4aclchs (γb (ch − cl) + 4ch (b+ cl))−
4bclc2hs

2
(
b (2 + γ)2 + 4 (1 + γ) cl

)
 (15)

When 0 ≤ s ≤ s2, t∗ hits a boundary of the feasible set.

t∗ = s

q∗l =
a [b (2− γ) + 2ch]− 4γbchs

β2 − γ2b2

q∗h =
a [b (2− γ) + 2cl] + 8ch (b+ cl) s

β2 − γ2b2

x∗l = 1

x∗h = 1− 2s
q∗h

=
a [b (2− γ) + 2cl]− 2b

[
b
(
4− γ2

)
+ 4cl

]
s

a [b (2− γ) + 2cl] + 8ch (b+ cl) s

r = 2ch
a (b (2− γ) + 2cl)− 2b

(
b
(
4− γ2

)
+ 4cl

)
s

β2 − γ2b2

π1
i =

1(
β2 − γ2b2

)2 ×


a2 (b+ cl) (b (2− γ) + 2ch)2 +

2achs
(
b3γ3 + 2b2γ2 (b+ cl) + β2 (b (2− 3γ) + 2cl)

)
−

4bchs2
(
b3γ4 + 2β2

(
b
(
2− γ2

)
+ 2cl

))
 (16)

π1
j =

[a (b (2− γ) + 2cl) + 8ch (b+ cl) s]
[
a (b+ ch) (b (2− γ) + 2cl) + 2b2chγ2s

](
β2 − γ2b2

)2 (17)
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Call this stationary point S2. It is straightforward to show that all the decision variables are

continuous at s1, which is at the junction between S1 and S2.

We now check the second order condition. We need only show the optimality in terms of (q∗, x∗) for

each individual firm because the objective functions are separable in (q, x) and t, and linear in t. For

an arbitrary firm i, the Hessian H is the following 2× 2 matrix.

H =

(
−2
(
b+ cix

2
i

)
−4ciqixi + vi

−4ciqixi + vi −2ciq2i

)
Note that the diagonal elements are negative.

At stationary point S1 we have

H = −2

(
b 0

0 ciq
2
i

)
whose determinant is det (H) = 4bciq2i > 0.

At stationary point S2

H = −2

(
b+ cix

2
i ciqixi

ciqixi ciq
2
i

)
and det (H) = 4bciq2i also. �

Proof that ql > 0 Assume that λl > 0 and ql = 0. This corresponds to the situation where firm l

withdraws from the market and sells all its emission allowances to firm h who becomes a monopolist.

The firms jointly maximize

maxπ0
l (t) = r · t

subject to t ≤ s

max
qh≥0, 0≤xh≤1

πmh (qh, xh, t) = qh · (a− b · qh)− ch · (qh · xh)2 − r · t

subject to qh · (1− xh) ≤ s+ t

The KT conditions are:

r = ξl (18)

a− 2qh
(
b+ chx

2
h

)
− νh (1− xh) = 0 (19)

qh (νh − 2chqhxh)− µh = 0 (20)

r = νh (21)

Where we use the same notations as previously and ξl is the Lagrange multiplier associated with

the constraint t ≤ s. A necessary condition is

r = ξl = νh
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• Suppose ξl = 0. Then we must also have νh = 0. Equation (20) implies that µh = 0 and qhxh = 0.

Equation (19) forbids that qh = 0 and implies that

qh =
a

2b
and xh = 0

The firm will set t = arg min
{
|t| such that a

2b − s ≤ t ≤ s
}
. A necessary condition is

s ≥ a

4b

Firm l’s profits are

π0
l = 0

• Suppose ξl > 0. Then t = s and r = ξl = νh > 0, which implies qh (1− xh) = s+ t = 2s.

If µh > 0, xh = 1 and we have the contradiction t = −s. Thus µh = 0.

Equations (19) and (20) imply

νh = 2chqhxh

qh =
a+ 4chs
2 (b+ ch)

xh = 1− 2s
qh

=
a− 4bs
a+ 4chs

Since νh > 0 then xh > 0 which implies that

s <
a

4b

We can calculate the price of emission allowances

r = νh =
ch (a− 4bs)
b+ ch

Firm l’s profits are

π0
l =

ch (a− 4bs) s
b+ ch

We immediately have

π0
l (0) = π0

l

( a
4b

)
= 0

The maximum value of π0
l is at the middle of

[
0, a4b

]
:

π0
l

( a
8b

)
=

a2ch
16b (b+ ch)

For s ≥ a
4b , it is clear that firm l will choose to produce ql > 0.

For s ≤ a
4b , since s2 < a

4b , we also need to verify that for s2 < s < a
4b

π0
l < π1

l (given in equation 14)
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and that for 0 ≤ s ≤ s2
π0
l < π1

l (given in equation 16)

π0
l and π1

l are quadratic concave functions of s.

Let us start with s2 < s < a
4b . We have

π1
l (0) =

a2
(
b (cl + ch)2 + 4clc2h

)
(b (2 + γ) (cl + ch) + 4clch)2

> 0

π1
l

( a
4b

)
=

a2
[
4b2 (cl + ch)2 + bclch

[
cl
(
12− γ2

)
+ 4ch (4− γ)

]
+ 4 (3− γ) c2l c

2
h

]
4b (b (2 + γ) (cl + ch) + 4clch)2

> 0

It is enough to show that π1
l ≥ π0

l at a
8b .

π1
l

( a
8b

)
=
a2
(

16b2 (cl + ch)2 + bclch [cl (28 + γ (4− γ)) + 8 (8− γ) ch] + 4 (7− γ) c2l c
2
h

)
16b (b (2 + γ) (cl + ch) + 4clch)2

Then

π1
l

( a
8b

)
> π0

l

( a
8b

)
⇐⇒ 16b3 (cl + ch)2 + b2ch

(
2c2l
(
20− γ2

)
+ 2clch (44− γ (8 + γ)) + c2h (2− γ) (6 + γ)

)
+

bclc
2
h (cl (40− γ (γ + 8)) + 16ch (3− γ)) + 4 (3− γ) c2l c

3
h > 0

Now 0 ≤ s ≤ s2. We have

π1
l (0) =

a2 (b+ cl) (b (2− γ) + 2ch)2(
β2 − γ2b2

)2 > 0

π1
l

( a
4b

)
=

a2
[
b2chγ

3 (2− γ) + (2− γ)β2 (b (2− γ) + 2cl (1− γ))
]

4
(
β2 − γ2b2

)2 > 0

π1
l

( a
8b

)
=

a2

16b
(
β2 − γ2b2

) × [ b3chγ
3 (4− γ) + 8γ2b (b+ cl)

(
2b2 + 2bch + c2h

)
+

4β2
(
4 (1− γ) b2 + (5− 3γ) bch + clch

) ]

Then

π1
l

( a
8b

)
> π0

l

( a
8b

)
⇐⇒ b (2b (2− γ) + ch (4− γ))

(
b2chγ

3 + 2β2 (2− γ) (b+ ch)
)
> 0

�
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Proof that qh > 0 The case qh = 0 is the symmetric of ql = 0. The proof is obtained by swapping

l and h, except in the last step when comparing firm h’s profits if qh = 0 to its profits if qh > 0 when

0 ≤ s ≤ s2. In this case, xl = 1 and we have

π1
h (0) =

a2 (b+ ch) (b (2− γ) + 2ci)
2(

β2 − γ2b2
)2 > 0

π1
h

( a
4b

)
=

a2
(
β2 − 2γb2

) [
2 (b+ ch) (b (2− γ) + 2cl) + γ2bch

]
4b
(
β2 − γ2b2

)2 > 0

π1
h

( a
8b

)
=

a2
(
(b+ cl) (2b+ ch)− γb2

) [
4 (b+ ch) (b (2− γ) + 2cl) + γ2bch

]
4b
(
β2 − γ2b2

)2
Then

π1
h

( a
8b

)
> π0

h

( a
8b

)
⇐⇒ 4β2 (b+ cl)

(
4 (1− γ) b2 + 3bcl + b (2− γ) ch + clch

)
+

4γ2b

 (
2b2 + clch

)2 + b2
(
2c2l + c2h + 4 (6− γ) clch

)
+

2bclch (2cl + ch) + b3
((

6− γ2

4

)
cl + (6− γ) ch

)  > 0

�

7.1.3 Proof of Theorem 3

In the two-stage model, the firms first trade emission allowances with each other to maximize their

joint profits, then produce and compete in the market. The solution is derived by backward induction,

starting from the production/competition stage, and working backwards to the trading stage. In the

first stage, the firms’ problem is to solve the following joint-maximization problem:

max
ql>0, 0≤xl≤1

π2
l (ql, xl|t, qh) = ql · (a− b · ql − γ · b · qh)− cl · (ql · xl)2

subject to ql · (1− xl) ≤ s− t

max
qh>0, 0≤xh≤1

π2
h (qh, xh|t, ql) = qh · (a− b · qh − γ · b · ql)− ch · (qh · xh)2

subject to qh · (1− xh) ≤ s+ t

This problem is the same as the single-stage model, except that the firms do not choose t at that point.

Let Π denote the firms’ joint profits. Without any conditions on the price of emission allowances (r)

and the trading volume, four production equilibria are feasible:

1. The pollution constraints are slack for both firms (equation 8 of the single-stage model):

ql = qh =
a

b (γ + 2)
xl = xh = 0

Π∗1 =
2a2

b (γ + 2)2
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provided that
a

b (γ + 2)
− s ≤ t ≤ s− a

b (γ + 2)

In particular, we must have s ≥ s1. Call this stationary point S1. In the second stage, the firms

choose t to maximize their joint profits. Since the profits are independent of t, the firms will

choose the smallest |t| .
t∗1 = 0

2. The pollution constraint is slack for firm l but binds for firm h. The firms must solve{
2bql + γbqh = a

γbql + 2 (b+ ch) qh = a+ 2ch (s+ t)

The solution is

ql =
a [b (2− γ) + 2ch]− 2γbch (s+ t)

b [b(4− γ2) + 4ch]

qh =
a(2− γ) + 4ch (s+ t)

b(4− γ2) + 4ch
xl = 0

xh =
(2− γ) [a− b (γ + 2) (s+ t)]

a (2− γ) + 4ch (s+ t)

Π2 =
1

b [b (4− γ2) + 4ch]2
×


a2
[
2b2 (2− γ)2 + bch (6− γ) (2− γ) + 4c2h

]
+4abch

[
b (2− γ)2 + 4ch (1− γ)

]
(s+ t)

−b2ch
[
b
(
4− γ2

)2 + 4ch
(
4− 3γ2

)]
(s+ t)2


Call this stationary point S2. Feasibility conditions are

−s ≤ t <
a

b (γ + 2)
− s

t ≤ f (s)

where the function f is defined in the proof of the single-stage model (equation 10).

In the second stage, the firms choose t to maximize Π2.

Define s4 =
a[b(2−γ)2(4+γ)+2ch(8−γ(6+γ))]

2b[b(4−γ2)2+4ch(4−3γ2)] .

Π2 is quadratic and concave in s+ t, thus there is a unique maximum

t∗2 =

 f (s) if a[b(2−γ)+2ch]
2b[b(4−γ2)+4ch]

≤ s < s4
2a[b(2−γ)2+4(1−γ)ch]
b[b(4−γ2)2+4ch(4−3γ2)] − s if s ≥ s4
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When s ≥ s4, the optimal production quantities and abatement levels are:

q∗l =
a
[
b (2− γ)2 (2 + γ) + 2ch [4− γ (2 + γ)]

]
b
[
b (4− γ2)2 + 4ch (4− 3γ2)

]
q∗h =

a
[
b (2− γ)2 (2 + γ) + 8 (1− γ) ch

]
b
[
b (4− γ2)2 + 4ch (4− 3γ2)

]
x∗l = 0

x∗h =
b (2− γ)2 γ

b (2− γ)2 (2 + γ) + 8 (1− γ) ch

Π∗2 =
a2
[
2b (2− γ)2 + ch [8− γ (8− γ)]

]
b
[
b (4− γ2)2 + 4ch (4− 3γ2)

]
It is straightforward to verify that Π∗2 ≥ Π∗1 so that S1 is dominated by S2. We will later show

that S2 is dominated when s < s4 and t∗ = f (s), so we can ignore that case.

3. The pollution constraint is binding for firm l but slack for firm h. The firms must solve{
2 (b+ cl) ql + γbqh = a+ 2cl (s− t)
γbql + 2bqh = a

The solution is

ql =
a(2− γ) + 4cl (s− t)

b(4− γ2) + 4cl

qh =
a [b (2− γ) + 2cl]− 2γbcl (s− t)

b [b(4− γ2) + 4cl]

xl =
(2− γ) [a− b (γ + 2) (s− t)]

a (2− γ) + 4cl (s− t)
xh = 0

Π3 =
1

b [b (4− γ2) + 4cl]
2 ×


a2
[
2b2 (2− γ)2 + bcl (6− γ) (2− γ) + 4c2l

]
+4abcl

[
b (2− γ)2 + 4cl (1− γ)

]
(s− t)

−b2cl
[
b
(
4− γ2

)2 + 4cl
(
4− 3γ2

)]
(s− t)2


Call this stationary point S3. Feasibility conditions are

s− a

b (γ + 2)
< t ≤ s

t ≥ g (s)

where the function g is defined in the proof of the single-stage model (equation 11).
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Define s6 =
a[b(2−γ)2(4+γ)+2cl(8−γ(6+γ))]

2b[b(4−γ2)2+4cl(4−3γ2)] . Π3 is quadratic and concave in s− t; thus

t∗3 =

 g (s) if a[b(2−γ)+2ch]
2b[b(4−γ2)+4ch]

≤ s ≤ s6

s− 2a[b(2−γ)2+4(1−γ)cl]
b[b(4−γ2)2+4cl(4−3γ2)] if s ≥ s6

The optimal production quantities and abatement levels are:

q∗l =
a
[
b (2− γ)2 (2 + γ) + 8 (1− γ) cl

]
b
[
b (4− γ2)2 + 4cl (4− 3γ2)

]
q∗h =

a
[
b (2− γ)2 (2 + γ) + 2cl [4− γ (2 + γ)]

]
b
[
b (4− γ2)2 + 4cl (4− 3γ2)

]
x∗l =

b (2− γ)2 γ
b (2− γ)2 (2 + γ) + 8 (1− γ) cl

x∗h = 0

Π∗3 =
a2
[
2b (2− γ)2 + cl [8− γ (8− γ)]

]
b
[
b (4− γ2)2 + 4cl (4− 3γ2)

]
It is straightforward to verify that Π∗2 ≥ Π∗3, meaning that S3 is dominated by S2. We will later

show that S3 is also dominated when s < s6 and t∗ = g (s), so we can ignore that case.

4. The final case is for both pollution constraints to bind (equation 9 of the single-stage model):

ql =
a (b+ 2ch)− 2γbch (s+ t) + 4cl (b+ ch) (s− t)

β2 − γ2b2

qh =
a (b+ 2cl)− 2γbcl (s− t) + 4ch (b+ cl) (s+ t)

β2 − γ2b2

xl = 1− s− t
ql

xh = 1− s+ t

qh

The expression for the joint profits is complicated.

Π4 = − 1(
β2 − γ2b2

)2 ×

[a (b (2− γ) + 2ch) + 2b (2cl (s− t)− chγ (s+ t)) + 4clch (s− t))]×[
a (b+ 2cl) (bγ − 2 (b+ ch)) + 2b

(
b
(
chγ (s+ t) + cl

(
2− γ2

)
(s− t)

)
+ 2clch ((1 + γ) s− (1− γ) t)

)]
+ [a (b (2− γ) + 2cl)− 2 (b (clγ (s− t)− 2ch (s+ t)) + 2clch (s+ t))]×[

a (b+ 2ch) (bγ − 2 (b+ cl)) + 2b
(
2clch (s− t+ γ (s+ t)) + b

(
clγ (s− t) + ch

(
2− γ2

)
(s+ t)

))]
+ch [(b (2− γ) + 2cl) (a− b (2 + γ) s)− b (2− γ) t (b (2 + γ) + 2cl)]

2

+cl [(b (2− γ) + 2ch) (a− b (2 + γ) s) + b (2− γ) t (b (2 + γ) + 2ch)]2


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The feasibility conditions qi > s− t and qj > s+ t lead to the following conditions on t

g (s) < t < f (s)

A necessary condition is that s < s1. Call this stationary point S4. Π4 is quadratic and concave

in t.

The unique maximum is at

t∗4 =
(ch − cl)

[
2a
(
b2γ2 + (1− γ)β2

)
− bs

(
4β2 − γ2

((
8− γ2

)
b2 + 12b(cl + ch) + 12clch

))]
4β2 (b (cl + ch) + 2 (1− γ) clch)− bγ2

(
(8− γ2) b2 (cl + ch) + 4b

(
3c2l + 4clch + 3c2h

)
+ 12clch (cl + ch)

)
t∗ is a linear, increasing function of s. We need to check that it is feasible.

Define
s3 as the point at which t∗4 intersects t = s

s5 as the point at which t∗4 intersects t = f (s)

We have

s3 =
a (ch − cl)

(
b2γ2 + (1− γ)β2

)
ch
[
4β2 (b+ (1− γ) cl)− bγ2 ((8− γ2) b2 + 8bcl + 12bch + 12clch)

]
s5 =

a
(
b2 (2− γ)2 (clγ + ch (4 + γ)) + 2bch (8− γ (6 + γ)) (cl + ch) + 16clc2h(1− γ)

)
2bch

(
b2 (4− γ2)2 + 2b (cl (8− γ (4 + γ (2 + γ))) + 2 (4− 3γ) ch) + 8clch (2− γ − γ2)

)
Note that

0 ≤ s3 ≤ s5 ≤ s1

See figure 10 below.

t∗4 is feasible ⇐⇒ s3 ≤ s ≤ s5

The optimal production quantities and abatement levels are

q∗i =
(a (cl + ch) + 4clchs)

(
2β2 − bγ2 (2 (1− γ) b+ 2ch)− 4γ (b+ 2cl) (b+ ch)

)
4β2 (b (cl + ch) + 2 (1− γ) clch)− bγ2

(
(8− γ) b2 (cl + ch) + 4b

(
3c2l + 4clch + 3c2h

)
+ 12clch (cl + ch)

)
q∗j =

(a (cl + ch) + 4clchs)
(
2β2 − bγ2 (2 (1− γ) b+ 2cl)− 4γ (b+ cl) (b+ 2ch)

)
4β2 (b (cl + ch) + 2 (1− γ) clch)− bγ2

(
(8− γ) b2 (cl + ch) + 4b

(
3c2l + 4clch + 3c2h

)
+ 12clch (cl + ch)

)
x∗i = 1− s− t∗4

q∗i

x∗j = 1− s+ t∗4
q∗j

Π∗4 =
1

4β2 (b (cl + ch) + 2 (1− γ) clch)− bγ2
(
(8− γ2) b2 (cl + ch) + 4b

(
3c2l + 4clch + 3c2h

)
+ 12clch (cl + ch)

)(22)

×

[
a
(
2 (1− γ)β2 + bγ2 (2b+ cl + ch)

)
(a (cl + ch) + 8clchs)

−4bclchs2
(
4β2 − γ2

((
8− γ2

)
b2 + 12b(cl + ch) + 16clch

)) ] (23)
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Figure 10: Representation of the feasible region in the {s, t} space.

When 0 ≤ s ≤ s3, t∗4 hits a boundary of the feasible set.

t∗4 = s

q∗i =
a (b (2− γ) + 2ch)− 4γbchs

β2 − γ2b2

q∗j =
a (b (2− γ) + 2cl) + 8ch (b+ cl) s

β2 − γ2b2

x∗i = 1

x∗j = 1− 2s
q∗j

Π∗4 =
1(

β2 − γ2b2
)2 ×


a2
[
b2γ2 (2b+ cl + ch) + β2 (2b (1− γ) + cl + ch)

]
+8achs (b+ cl)

(
β2 − bγ ((4− γ) b+ 4ch)

)
−4bchs2

[
b3γ4 − 4bγ2 (b+ cl) (2b+ 3ch) + 4β2 (b+ cl)

]
 (24)

When s5 ≤ s ≤ s1, t∗4 hits another boundary of the feasible set.

t∗4 = f (s)

We now show that this solution is dominated. The firms’ production and abatement decisions are

continuous along the boundary t = f (s) and so are the joint profits. We have

s5 ≥ s4

which implies that the joint profits under S4 along t = f (s) (when t∗ hits the boundary of the

feasible set) are less than the interior solution of S2. In other words, S2 dominates S4. We have
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the following result:

S2 is the global maximum for s ≥ s5 (25)

A similar reasoning is used to prove that S4 dominates S2 when s ≤ s4 (in this case S2 sits on the

boundary and S4 is the interior point solution), and that S4 dominates S3 when s ≤ s6 (in this

case S3 sits on the boundary and S4 is the interior point solution). Since s4 ≤ s5, we have the

following result:

S4 is the global maximum for s ≤ s4 (26)

Combining results (25) and (26) and the fact that Π∗2 is independent of s and Π∗4 is strictly concave

in s, we have the following result:

There exists a unique s ∈ [s4, s5] such that S4 is the unique global maximum for s < s and S2 is

the unique global maximum for s ≥ s.

Can qh = 0? When qh = 0, firm l is a monopolist. The firms jointly maximize

max
ql≥0, 0≤xl≤1

Πm (ql, xl) = ql · (a− b · ql)− cl · (ql · xl)2

subject to ql · (1− xl) ≤ s− t and t ≥ −s

Using the same notations as previously, the KT conditions are:

a− 2ql
(
b+ clx

2
l

)
− νl (1− xl) = 0 (27)

ql (νl − 2clqlxl)− µl = 0 (28)

• Suppose νl = 0 (slack pollution constraint). Equation (28) implies that µl = 0 and qlxl = 0.

Equation (27) implies that

ql =
a

2b

Since ql > 0, xl = 0. We have the following conditions

−s ≤ t ≤ s− a

2b

A necessary condition is that s ≥ a
4b . The optimal joint profits are

Πm∗ =
a2

4b

• Suppose νl > 0 (binding pollution constraint). Then ql (1− xl) = s− t.
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– If µl = 0, equations (27) and (28) imply

νl = 2clqlxl

ql =
a+ 2cl (s− t)

2 (b+ cl)

xl =
a− 2b (s− t)
a+ 2cl (s− t)

provided that

s− a

2b
< t ≤ s

t ≥ −s

The firms’ joint profits are

Πm =
a2 + 4acl (s− t)− 4bcl (s− t)2

4 (b+ cl)

If s ≥ a
4b , to maximize their joint profits, the firms will choose

t∗ = s− a

2b

and

Πm∗ =
a2

4b

If s < a
4b , then t∗ = −s and the joint profits are

Πm∗ =
a2 + 8acls− 16bcls2

4 (b+ cl)

– µi > 0 is a special case of the previous case with t = s = 0, leading to a joint profit = a2

4(b+cl)
.

We conclude by comparing the firms’ joint profits when qh = 0 and when qh > 0.

Note that s3 ≤ a
4b ≤ s4. This implies that a

4b ≤ s.

• When s > s, firm h will shut down (i.e., qh = 0) if and only if

a2

4b
> Π∗2 (29)

The condition (29) is equivalent to

bγ4 − 16 (b+ ch) γ2 + 32 (b+ ch) γ − 16 (b+ ch) = 0

This equation in γ has a unique root γh between 0 and 1. Define αh = ch
b .

γh = 2
√

1 + αh

√1 +
√

1
1 + αh

− 1


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γh ranges from 2
(√

2− 1
)
≈ .83 when αh = 0 to 1 when αh → +∞.

The condition (29) ⇐⇒ γ ≤ γh

If γ > γh firm h will shut down (i.e., qh = 0) and let firm l take the whole market.

• When a
4b < s < s, firm h will shut down if and only if

a2

4b
> Π∗4

where Π∗4 is given by equation (22).

• When s3 ≤ s ≤ a
4b , firm h will shut down if and only if

a2 + 8acls− 16bcls2

4 (b+ cl)
> Π∗4

where Π∗4 is given by equation (22).

• When 0 ≤ s ≤ s3, firm h will shut down if and only if

a2 + 8acls− 16bcls2

4 (b+ cl)
> Π∗4

where Π∗4 is given by equation (24). �
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